Deep Learning Based Atom Segmentation and Noise and Missing-Wedge Reduction for Electron Tomography
نویسندگان
چکیده
منابع مشابه
Deep learning based supervised semantic segmentation of Electron Cryo-Subtomograms
Cellular Electron Cryo-Tomography (CECT) is a powerful imaging technique for the 3D visualization of cellular structure and organization at submolecular resolution. It enables analyzing the native structures of macromolecular complexes and their spatial organization inside single cells. However, due to the high degree of structural complexity and practical imaging limitations, systematic macrom...
متن کاملNoise Robust Mojette Reconstructions for Missing Wedge Effect Attenuation
The Mojette transform is a tomographic reconstruction method based on a discrete and finite interpretation of the Radon theorem. Since the Mojette acquisition follows the discrete image geometry, this method resolves the well-known irregular sampling problem. A specific algorithm called Corner Based Inversion (CBI) is proposed to reconstruct without any error an image from its projections even ...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملBLAME-BASED NOISE REDUCTION: AN ALTERNATIVE PERSPECTIVE ON NOISE REDUCTION FOR LAZY LEARNING Blame-Based Noise Reduction: An Alternative Perspective on Noise Reduction for Lazy Learning∗
In this paper we present a new perspective on noise reduction for nearest-neighbour classifiers. Classic noise reduction algorithms such as Repeated Edited Nearest Neighbour remove cases from the training set if they are misclassified by their nearest neighbours in a leave-one-out cross validation. In the approach presented here, cases are identified for deletion based on their propensity to ca...
متن کاملCompensation of Missing Wedge Effects with Sequential Statistical Reconstruction in Electron Tomography
Electron tomography (ET) of biological samples is used to study the organization and the structure of the whole cell and subcellular complexes in great detail. However, projections cannot be acquired over full tilt angle range with biological samples in electron microscopy. ET image reconstruction can be considered an ill-posed problem because of this missing information. This results in artifa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microscopy and Microanalysis
سال: 2018
ISSN: 1431-9276,1435-8115
DOI: 10.1017/s143192761800301x